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Multiaffinity and entropy spectrum of self-affine fractal profiles

Hiroaki Katsuragi* and Haruo Honjo†

Department of Applied Physics, Faculty of Engineering, Kyushu University, Ropponmatsu, Fukuoka 810-8560, Japan
~Received 10 December 1997!

The entropy spectrum method is applied to self-affine fractal profiles. First, the profile created by a gener-
alized multiaffine generator is decomposed into many subsets having their own topological entropies. The
entropy spectrum andHq ~the qth Hurst exponent! of its profile is calculated exactly. For each subset,DD

~divider dimension! andDB ~box dimension! are also calculated. The relationDB522Hq51 is obtained for the
remaining subset after infinite iteration of the generator. Next, the entropy spectrum of fractional Brownian
motion ~FBM! traces is examined and obtained as a point spectrum. This implies that a variety of lengths of
segments in FBM traces is caused not by intrinsic inhomogeneity or mixing of the Hurst exponents but by only
the trivial fluctuation. Namely, there are no fluctuations in singularity or in topological entropy. Finally, a real
mountain range~the Hida mountains in Japan! is also analyzed by this method. Despite the profile of the Hida
mountains having two Hurst exponents, the entropy spectrum of its profile becomes a point spectrum again.
@S1063-651X~99!10901-2#

PACS number~s!: 47.53.1n, 05.40.2a, 92.40.Gc
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I. INTRODUCTION

In nature, there are many complex patterns such as co
lines, clouds, and cracks. Though it seems that quantita
analysis of these complex patterns is impossible at a gla
the fractal concept enables us to analyze them quantitati
@1#. The scaling exponent between the utilized unit size a
the number of units to cover the object is very useful
quantify these complex patterns and is called the fractal
mension. The concept of the fractal has become very fam
now and has been expanded.

Many patterns are scaled differently in different dire
tions, for example, fracture surfaces of metals@2#, crystalli-
zation of NH4Cl @3#, wet front propagation in paper@4#, real
mountain topography@5,6# and so on@7,8#. These anisotropic
patterns are called self-affine fractals and are character
by the Hurst exponent~or roughness exponent! H (0,H
,1) @7#. We consider a single-valued function of a sing
variableF(t). If the function is a self-affine fractal, the func
tion satisfies the scaling relation

F~ t !.j2HF~jt !, ~1!

where j is a parameter. In stochastic systems, the heig
height correlation functionC(t) can be evaluated. For a sta
tistical self-affine function,C(t) is written as

C~ t !5^uF~ t8!2F~ t81t !u& t8}tH, ~2!
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8141, Japan.

†Present address: Department of Applied Science for Electro
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where angular brackets denote an average quantity. In
single-valued self-affine function, the fractal dimensi
shows different values depending on measuring method
is well known that thelocal divider dimensionDD and the
local box dimensionDB are related toH as @9,10#

DD5
1

H
, ~3a!

DB522H. ~3b!

These relations hold only on profiles whose topological
mension is unity that are embedded in two-dimensional

clidean space. In addition, Eq.~3a! holds for H > 1
2 . For

H, 1
2 , DD52 @10#. Moreover, bothDD and DB become

unity on aglobal scale@11#. However, these relations~3a!
and ~3b! are very useful for investigation of self-affine frac
tals due to the easier measurements ofDD andDB and the
dominance ofH> 1

2 in nature.
On the other hand, limitations of only one fractal dime

sion for self-similar fractals have been realized. Thus frac
measures characterized by an infinite hierarchy of fractal
mensions have been researched@12,13#. This multifractal in-
sight provides much detailed understanding@11#. The multi-
fractal property has been usually studied by thef (a)
spectrum obtained from a thermodynamic formalism. In
formalism a partition function is defined and thef (a) spec-
trum is obtained from the Legendre transform. Thisf (a)
spectrum method can describe the static fluctuations of
gularity of the probability measure and fractal dimension

Recently, Baraba´si et al. have reported multifractality of
self-affine fractals@14,15#. They have investigated a multi
affine function created by a simple generator and have
tained a multifractal spectrum. They have calculated
qth-order height-height correlation functionCq(t) as

Cq~ t !5^uF~ t8!2F~ t81t !uq& t8 ~4!
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PRE 59 255MULTIAFFINITY AND ENTROPY SPECTRUM OF SELF- . . .
and defined the generalized Hurst exponentHq in the limit
t→0 of

Cq~ t !}tqHq. ~5!

If Hq varies withq, a nontrivial multiaffine spectrum is ob
tained. This analysis corresponds to the multifractal met
and its thermodynamic formalism is defined in Ref.@15#.

In contrast to thef (a) spectrum, the entropy spectru
has been studied in order to describe the dynamical prop
This entropic analysis has also been defined by the ther
dynamic formalism and has been applied to chaotic dyn
ics @16,17#. Sano et al. have investigated fluctuations o
Lyapunov exponents and topological entropy such as the
lationships among dimensions of invariant measur
Lyapunov exponents and entropies, the strange attracto
repeller, and the variational principle@16#. In general, the
entropy function of hyperbolic dynamical systems has b
obtained by Bohr and Rand@18#. Honjo and Sano have stud
ied self-similar fractal patterns by the entropy spectr
method @19#. They have obtained entropy spectra of se
similar fractal patterns with multiscaling factors. Each p
tern has been decomposed into many fractal subsets of
ferent similarity dimensions whose maximum val
corresponds to the similarity dimension of the whole patte
They have discussed the dynamical behavior of the sub
using the entropy spectrum. The multifractal spectrum a
entropy spectrum are very similar but not identical. The m
difference between the two spectra is the definition of
singularity of subsets, which is defined to the support size
the former and the time step in the latter to describe
dynamics of pattern formation@19#. Hence the entropy spec
trum method can describe fluctuations of topological entro
and singularity to the time step. Namely, we can exam
how microstructures appear associated with the time ste
the entropy spectrum method.

To the best of our knowledge, there is no report on
entropy spectrum of self-affine fractal profiles. In this pap
we apply the entropy spectrum method to self-affine frac
profiles. One of our purposes, is to understand the appea
behavior of microstructures in self-affine fractal profiles. F
example, a random time series is only the folded line in
early stage and its profile becomes complicated by long t
observation. This complicated process resembles the itera
process of the generator. Therefore, we investigate the
tailed evolution of generalized multiaffine generators. A p
rameter that is independent of the time step is introdu
instead of using the thermodynamic formalism. It is use
for the investigation of profiles created by contraction ma
because the topological entropy, singularity, divider dim
sion, and box dimension are calculable for each subse
succession, this method is applied to fractional Brown
motion ~FBM! traces @20# as a random time series. Re
mountain profiles~the Hida mountains in Japan! are also
analyzed as an example of the real self-affine fractal profi
in nature. Finally, the comparison between the entropy sp
trum and multiaffine spectrum is discussed.
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II. ENTROPY SPECTRUM AND DIMENSIONS
OF GENERALIZED MULTIAFFINE PROFILES

A. Formulation

Barabási et al. have worked with a simple multiaffine
generator@Fig. 1~a!# @14#. The initiator is a diagonal line of a
square whose side is unity. The generator has the same
zontal contraction ratio14 and two different vertical contrac
tion ratios 4

5 and 1
2 . Mixing of these different contraction

ratios results in the multiaffinity described by variableHq .
This generator is a simple example. Thus we consider
generalized multiaffine generator@Fig. 1~b!# and discussHq
and the entropy spectrum.

The generator consists ofN segments, which have
the same horizontal contraction ratioa (5 1/N) and differ-

ent vertical contraction ratiosaHi8 in the ith segment (i
51,2,...,N). HereHi8 describes the anisotropy of scaling
each segment. IfHi85H ~const! for all i , the profile at an
infinite iteration time (n5`) certainly has one~not multiple!
Hurst exponentH. If each Hi8 is different, various vertical
lengths are yielded by the combination of different contra
tion ratios. Therefore, we are interested in vertical lengths
individual segments. We focus on whether or not the sin
larity of the probability measure being proportional to t
vertical lengths of individual segments fluctuates. Furth
more, the vertical lengths of the segments are very impor
for calculations of the height-height correlation function, d
vider dimension, and box dimension.

We consider a segment whose vertical length isl n(k)

5a(H18k11H28k21•••1HN8 kN) at thenth step. Here the vectork is
k5(k1 ,k2 ,...,kN), ki is an integer (0<ki<n), and ( i 51

N ki

5n. The total vertical length of segments is written asLn

5(aH181aH281•••1aHN8 )n. The probability measure of the
segment ispn(k)5 l n(k)/Ln . From the above definitions

FIG. 1. ~a! The initiator is a diagonal line of a square. Th
generator has four contraction maps and two different scaling

tors 4
5 (5aH185aH28) and 1

2 (5aH385aH48) in the vertical direction.
All of the segments have the same horizontal contraction ratia
5

1
4 . ~b! The initiator is a diagonal line of a square. The genera

consists ofN contraction maps. Theith segment has the same hor
zontal contraction ratioa and different vertical contraction ratio

aHi8.
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l n(k), the number of segmentsNn(k), andpn(k) are obtained
as

l n~k!5)
i 51

N

aHi8ki, ~6a!

Nn~k!5nCk1 n2k1
Ck2

•••n2k12•••2kN21
CkN

, ~6b!

pn~k!5

)
i 51

N

aHi8ki

S (
i 51

N

aHi8D n . ~6c!

We assume that forn@1, l n(k), Nn(k) andpn(k) could de-
pend onn as

l n~x!5exp@2nd~x!#, ~7a!

Nn~x!5exp@nh~x!#, ~7b!

pn~x!5exp@2nl~x!#. ~7c!

Here the vectorx is x5(x1 ,x2 ,...,xN) and x15k1 /n ,x2

5k2 /n ,...,xN5kN /n (( i 51
N xi51, 0<xi<1). d(x) is the

decay exponent of the vertical length of the segment,h(x) is
the increasing exponent of the number and represents
topological entropy of the segment, andl(x) is the decay
exponent of the probability measure of the segment. Fr
h(x) andl(x), theh(l) spectrum is obtained, i.e.,h(x) and
l(x) are parameter descriptions ofh(l). Then we divide the
prefractal @11# profile set Sn at the nth step into subsets
Sn„l(x)… characterized byl(x),

Sn5ø
l~x!

Sn„l~x!…. ~8!

For n @ 1, explicit forms ofd(x), h(x), andl(x) are cal-
culable as

d~x!52(
i 51

N

Hi8xi ln a, ~9a!

h~x!52(
i 51

N

xi ln xi , ~9b!

l~x!5 lnS (
i 51

N

aHi8D 2(
i 51

N

Hi8xi ln a. ~9c!

Note that d(x), h(x), and l(x) are independent ofn.
There are some characteristic subsets. The maximum v
of the h(l) spectrumhmax(5 ln N) corresponds to the in
creasing ratio of all segments at each iteration. From E
~9b! and ~9c!, we can find that the subset satisfyingxi
5a ( i 51,2,...,N) has this maximum value (hmax). Namely,
in theh(l) spectrum, there is a unique maximum value c
responding to the topological entropy of the entire patte
The probability of the subsetSn„l(x)… can be written
as Pn„l(x)…5Nn„l(x)…pn„l(x)…5exp@2n$l(x)2h„l(x)…%#
he

m

lue

s.

-
.

andl(x)2h(l(x))>0. Thus only the subset whoseh„l(x)…
is equal to l(x) remains atn5`; h(x)5l(x)[l* and
Pn5`(l* )51. Moreover, the corresponding entropyh*
(5l* ) denotes the information entropy@11# of the genera-

tor; h* 52( i 51
N r i ln ri . Here r i5aHi8/( i 51

N aHi8 is the prob-
ability of the segment~the vertical length normalized to th
total vertical length of the generator!. d(x) is related tol(x)
asd(x)5 ln(L1)1l(x).

Hq of this profile is also calculable. The exact form of th
qth-order height-height correlation function is written as

Cq~an!5 (
k11•••1kN5n

an
nCk1

•••

3 n2k12•••2kN21
CkN

aqH18k11•••1qHN8 kN

5@a~aqH181•••1aqHN8 !#n5~an!qHq.

Thus

Hq5

lnS (
i 51

N

a11qHi8D
qln a

. ~9d!

Here we improve the expression ofHq in Refs.@8,14,15,21#.
In those papers Hq was obtained as Hq5 ln@(b1

q

1b2
q)/2#/qln(1/4). According to Eq.~9d!, however,Hq of

their model should be written asHq5 ln@$2b1
q1b2

q1
(12b2)q%/4]/qln(1/4) in general. The expression in thos
papers holds only forb250.5.

The relations among the divider dimensionDD , box di-
mensionDB , and generalized Hurst exponentHq are inter-
esting problems. In order to examine these relations, we
culate DD and DB of the subsetSn„l(x)…. DD(x) is
obviously written as follows

DD~x!52
ln$Nn~x!%

ln$ l n~x!%
5

h~x!

d~x!
5

(
i 51

N

xi ln xi

(
i 51

N

Hi8xi ln a

. ~9e!

Next we calculateDB(x). We consider the box numbe
Mn(x) required to cover the vertical lengthl n(x) by squares
whose length of each side isen .en is written asen5an. Then
Mn(x) is obtained as

Mn~x!5

)
i 51

N

aHi8xin

an
5)

i 51

N

~aHi821!nxi.

Thus the box dimensionDB(x) is derived as

DB~x!52
ln$Nn~x!•Mn~x!%

ln$en%
512(

i 51

N

Hi8xi1

(
i 51

N

xi ln xi

ln a
.

~9f!
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The relationsDD51/H8(x) andDB522H8(x) hold for
the subset whose topological entropy is maximum (xi5a),
whereH8(x) denotes the anisotropy of scaling of the sub
@H8(x)5( i 51

N Hi8xi #. DD(x) is the same as the similarity d
mensionDS of self-similar fractal patterns@19#. Therefore,
the maximum value ofDD is obtained from the maximum
value of the slope of the connecting line from (lnL1,0) to the
h(l) spectrum inl-h space. On the other hand, 22H1 can
be written as

22H1522

lnS (
i 51

N

aHi811D
ln a

512

lnS (
i 51

N

aHi8D
ln a

. ~10!

From Eqs.~9f! and ~10! and h(x)5l(x), i.e., 2( i 51
N xi lnxi

5ln((i51
N aHi8)2(i51

N Hi8xiln a, the remaining subset atn5`
satisfies

22H1512(
i 51

N

Hi8xi1

(
i 51

N

xi ln xi

ln a
5DB~x!. ~11!

Equation~11! indicates that the relation~3b! holds only for
q51 in multiaffine profiles.

B. Simple example

A simple example studied by Baraba´si et al. is investi-
gated here again from the viewpoint of the entropy spectr
@Fig. 1~a!# @14#. Because the generator has only two verti
contraction ratios4

5 ~for i51,2! and 1
2 ~for i-3,4!, the vector

(x1 ,x2 ,x3 ,x4) can be represented by one variablex (5x1
1x2 ; 12x5x31x4) and 0<x<1. Thend(x), h(x), and
l(x) for n@1 are obtained as

d~x!5 ln
13

5
2x ln

4

5
2~12x!ln

1

2
5 ln

13

5
1l~x!,

~12a!

FIG. 2. Entropy spectrum of the profile created by the gener
of Fig. 1~a!. The topological entropy of the entire profile corr
sponds to the maximum value of the spectrum, ln4~open circle!.
The topological entropy of the longest and the shortest segment
ln 2 ~open diamonds!. The remaining subset atn5` is character-
ized byx5

8
13 ~open square!. The subset shown by the open triang

gives the maximum value ofDD(x).
t

m
l

h~x!5 ln 22x ln x2~12x!ln ~12x!, ~12b!

l~x!52x ln
4

5
2~12x!ln

1

2
. ~12c!

We show theh(l) spectrum in Fig. 2. The maximum valu
of the spectrum is ln 4, which corresponds to the increas
ratio of segments of the entire pattern. The subset chara
ized by x5 1

2 ~open circle in Fig. 2! gives this maximum
value ofh and certainly increases by 4n. The subsets of the
longest segmentsSn„l(1)… and the shortest segmen
Sn„l(0)… have the same minimum value ofh, ln 2 ~open
diamonds in Fig. 2!. This means that the number of the
subsets increases by 2n. The remaining subset atn5` is
characterized byx5 8

13 ~open square in Fig. 2!.
Hq , DD , andDB are also calculable as

Hq5

1

4F2S 4

5D q

12S 1

2D qG
q ln a

, ~12d!

DD~x!5
ln 22x ln x2~12x!ln~12x!

2x ln
4

5
2~12x!ln

1

2

, ~12e!

DB~x!5
3

2
1

1

ln 4Fx ln
4

5x
1~12x!ln

1

2~12x!G . ~12f!

Figure 3 showsDD(x) and DB(x). The relationsDD(x)
5 1/H8(x) andDB(x)522H8(x) hold for the subset char
acterized byx5 1

2 ~open circles in Fig. 3!. The remaining

subsetSn„l( 8
13 )… satisfies the relation~11! ~open square in

Fig. 3!. Furthermore, the maximum value ofDB(x) coin-

cides with that of the remaining subsetDB( 8
13 ). DD(x) is

over 2 in almost all subsets; therefore, its value is meani
less even in the subsets characterized byx5 1

2 or x5 8
13 . The

maximum value ofDD(x) numerically corresponds to th
maximum value ofh/(l2 ln L1) as predicted in Sec. II A
~open triangle in Fig. 2!.

r

are

FIG. 3. DD(x) ~divider dimension! andDB(x) ~box dimension!
of the subsetSn„l(x)… of the profile created by the generator of Fi
1~a!. The subset whoseh shows the maximum (x5

1
2 ) satisfies

DD(x)5 1/H8(x) andDB(x)522H8(x) ~open circles!. The subset
that remains atn5` satisfiesDB(x)522Hq51 ~open square!.
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Written as above, the entropy spectrum and dimensi
are calculable easily if the generator is given. However, i
too difficult to find the generator on the given pattern. Alte
natively, there is another chance to obtain the entropy sp
trum from the given pattern. From Eqs.~7a! and ~7c! the
relations nh(x)5 ln Nn(x) and nl(x)52 ln pn(x) are ob-
tained. Thus the log-log plots of the probability distributio
curves of segments varyingn give distribution curvessimilar
to the entropy spectrum. Figure 4 shows these distribu
curves of the prefractal profiles created by the generato
Fig. 1~a!. The subset is composed of the crossing poi
among distribution curves and the line from the origin of t
coordinate axes~open circles in Fig. 4 represent the subs
characterized byx5 1

10 ). Thenh(x) andl(x) are obtained in
each subset from then dependence of lnNn and 2 ln pn ,
respectively. After that, the entropy spectrum can be
tained.

III. SPECIFIC APPLICATION

A. Fractional Brownian motion

Up to now we have discussed contraction maps in a
mal way. This method should be applied to more spec
self-affine profiles. We analyze FBM traces as a typical
ample of self-affine fractal profiles such as random time
ries. FBM traces are produced by a successive random a
tion method @22#. Vertical and horizontal axes ar
normalized to closed intervals@0,1# at each step. We defin
the time stepn asn5 log2M, whereM is the total number of
segments. Thisn is equivalent to the resolution level of th
horizontal axis. The vertical length of each segment is n
malized to its total sum and this normalized length is
signed to the probability measurepn . We employ the cutoff
scale ofpn as min$pn%522n11131025. This cutoff scale is
determined by the compromise between the computing t
and the precision of the data. The probability measurepn is
replaced by pn522n11131025(k1 1

2 ) for the segment

FIG. 4. Probability distribution curves (lnNn versus2 ln pn) of
the prefractal profile created by the generator shown in Fig. 1~a! at
arbitrary time stepsn1 ,n2 ,n3. The subset is composed of crossin
points among these distribution curves and the line from the or
of coordinate axes. The open circles compose the subset chara
ized byx5

1
10.
s
s
-
c-

n
of
s

t

-

r-
c
-
-

di-

r-
-

e

whose pn is 22n11131025k<pn,22n11131025(k11),
wherek is a non-negative integer. The number of segme
is counted asNn(pn).

In order to compose the subset, log-log plots ofNn versus
1/pn at variousn are shown in Fig. 5~a!. Each distribution
curve is obtained from an average of 10 000 FBM trac
whoseH is 0.75. The case ofH50.75 seems to be a particu
lar case; however, these distribution curves are indepen
of H, as we will discuss later. In Fig. 5~b! the distribution
curves of differentH ’s at n511 are shown and one ca
realize the coincidence of these distribution curves. The m
interesting property of these distribution curves in Fig. 5~a!
is thecongruence. It should be recalled that the distributio
curves in the case of contraction maps aresimilar to each
other.

What makes this difference? The important difference
tween FBM traces and profiles created by the generator is
q dependence ofHq . The former has constantHq5H and
the latter has a continuously changing nontrivial functionHq
associated withq @14#. If Hq is constant, the vertical length
of the segmentl n , the total vertical lengthLn , and the num-
ber Nn are scaled by the time variationn→n2 log2b ~this
transformation is equivalent toa→ba for the horizontal
length of each segmenta and some parameterb) as

in
ter-

FIG. 5. ~a! Double logarithmic plots ofNn versus 1/pn on FBM
traces (H50.75). Gray circles indicate the subset whose probabi
Pn5Nnpn shows the maximum.~b! Double logarithmic plots ofNn

versus 1/pn on FBM traces that have different Hurst exponen
(H5 0.25, 0.50, and 0.75! at n511.
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l n→ l n2 log2b5bHl n , ~13a!

Ln→Ln2 log2b5bH21Ln , ~13b!

Nn→Nn2 log2b5b21Nn . ~13c!

From Eqs.~13a! and ~13b! the relation

pn→pn2 log2b5bpn ~13d!

is obtained for the probability measurepn5 l n/Ln. From Eqs.
~13c! and ~13d! it can be understood thatNn and 1/pn are
independent ofH. In addition, the relations lnNn→ln Nn
2ln b and 2 ln pn→2ln pn2ln b are obtained from Eqs
~13c! and ~13d!, respectively. These relations imply that a
points on log-log plots ofNn versus 1/pn shift along the line
whose slope is unity. That is the reason why the distribut
curves for FBM traces are notsimilar but congruentto each
other.

In the case of contraction maps, the subset is compose
crossing points among distribution curves and the line fr
the origin of coordinate axes. However, in this FBM ca
the subset should be composed of crossing points am
distribution curves and the line whose slope is unity beca
all subsets have the same scaling relations~13c! and ~13d!
due to the homogeneity ofHq . This composition of subset
inevitably leads to the result that all subsets have the saml
andh. Hence we obtain a point entropy spectrum for FB
traces. In order to obtain the values ofl andh, we show the
n dependence of lnNn and2 ln pn of the subset whose prob
ability Pn5Nnpn is maximum@gray circles in Fig. 5~a!# in
Fig. 6. The obtainedl andh arel5h50.691. This value is

FIG. 6. n dependence of lnNn and2 ln pn in the subset indicated
by gray circles in Fig. 5~a!. The slope of lnNn and2 ln pn givesh
50.691 andl50.691, respectively.

FIG. 7. Typical profile of the Hida mountains in Japan. T
height variation is exaggerated.
n

of

,
ng
se

very close to ln 2. Of course this value becomes lnc if we
definen5 logcM, wherec is a parameter.

B. Real mountain profiles

It has been reported that transect profiles of real moun
topography show self-affinity@5,6#. In particular, there is a

FIG. 8. ~a! The height-height correlation functionC(t) obtained
from the profile shown in Fig. 7. A crossover of the Hurst exp
nents is confirmed around the horizontal scale of 1 km. The H
exponents are obtained asH1s50.669 on a short length scale an
H1l50.428 on a long length scale.~b! The qth-order height-height
correlation functionCq(t) obtained from the profile shown in
Fig. 7.
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clear crossover ofH in Mt. Shirouma in the Japanese Alp
@5#. Matsushita and Ouchi have conjectured that this cro
over is caused by the difference of roughening proces
between short length scale and long length scale regimes
short length scales, small-scale erosions due to, e.g., flo
and earthquakes, produce the small-scale rough profile
long length scales, large-scale folds due to the plate tecto
determine the large-scale rough structure. This crossove
havior indicates that the profile has two Hurst exponents.
an interesting problem whether or not the entropy spect
andHq exhibit nontrivial characteristics.

We investigate the topography of the Hida mountains
the Japanese Alps. Figure 7 shows the typical profiles of
Hida mountains~very close to Mt. Shirouma! from the digi-
tal elevation map~50-m grid!. The height-height correlation
function C(t) of this profile is shown in Fig. 8~a!. A cross-
over of H is confirmed around the horizontal scale of 1 k
The value of 1 km is close to the crossover scale
Mt. Shirouma@5#. From Fig. 8~a! the Hurst exponent is ob
tained asH1s (Hqs at q51)50.669 on a shorter length
scale than 1 km and is obtained asH1l (Hql at q51!50.428
on a longer length scale than 1 km. In Sec. III A it is show

FIG. 9. Hq versusq obtained from the profile shown in Fig. 7
On both scales,Hq does not vary withq. The average generalize
Hurst exponents are obtained asHqs50.6860.01 andHql50.46
60.01.

FIG. 10. Double logarithmic plots ofNn versus 1/pn on the Hida
mountains. Gray circles indicate the subset whose probabilityPn

5Nnpn is the maximum.
s-
es
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.
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that theq dependence ofHq is very important; therefore, we
examineHqs andHql from Cq(t). Cq(t) curves of variousq
values are shown in Fig. 8~b!. We remove the data at larget
(t.20 km! from the power-law fitting because of too muc
fluctuation. This fluctuation arises due to the finite-size
fect. All Cq(t) curves show the crossovers aroundt.1 km.
We show theq dependence ofHqs and Hql in Fig. 9. It is
shown that bothHqs and Hql are constant (Hqs50.68
60.01 andHql50.4660.01). This means that real mounta
range topography has two unmixed Hurst exponents.

After the normalization of profiles to closed interv
@0,1#, we obtain log-log plots ofNn versus 1/pn with the
same definition ofn ~horizontal resolution level 22n),
Nn(pn), andpn ~the probability measure being proportion
to the height difference during normalized horizontal sc
22n) as in the FBM case~Fig. 10!. Each distribution curve is
an average of 200 profiles that are 50 m apart. Figure 1
very similar to Fig. 5~a! and distribution curves seem to b
congruent to each other. This affair implies that the scal
relations ~13a!–~13d! are also satisfied in the Hida moun
tains. Therefore, theCq(t) curves of the Hida mountain
should be fitted by the power law as mentioned in Fig.
Eventually, the above analysis method is easy and usefu
discuss the condition of the scaling. From Figs. 9 and
the entropy spectrum of the Hida mountains become
point again. The horizontal distance of 1 km is equivalent
n.6.26. No changes can be observed aroundn.6.26 in Fig.
10. It should be recalled that these probability distributi
curves are independent ofH. We assume that the segmen
whose probabilityPn5Nnpn is maximum compose the sub
set ~gray circles in Fig. 10!. Figure 11 shows then depen-
dence of lnNn and2 ln pn of this subset. The obtained value
of h and l are 0.732 and 0.685, respectively. Essentia
these values should be the same value ln 250.691; however,
they deviate slightly.

IV. DISCUSSION

If we redefine Eqs.~7a!–~7c! as l n(x)5and(x), Nn(x)
5a2nh(x), andpn(x)5anl(x), theh(l) spectrum becomes a
analog of the multiaffine spectrum defined by Baraba´si et al.
@15#, i.e., entropy spectrum and multiaffine spectrum are
sentially the same and our formulation of the entropy sp
trum is the same as the thermodynamic one.d(x), h(x), and

FIG. 11. n dependence of lnNn and 2 ln pn in the subset indi-
cated by gray circles in Fig. 10. The slope of lnNn and2 ln pn gives
h50.732 andl50.685, respectively.
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l(x) correspond tog, h ~or f ), anda, respectively, of the
formalism of Baraba´si et al.

For self-similar fractals, theh(l) and f (a) spectra are
different @19#. When the normalized length of the segment
assigned to the probability measure in thef (a) formalism,
the singularity of each subset becomes unity and thef (a)
spectrum becomes a point. There is only one length to c
acterize the segment in self-similar fractals, but there are
~vertical and horizontal! lengths in self-affine profiles. On
can define the vertical length as the probability measure
each support~horizontal length! in self-affine profiles. Then
the nontrivial f (a) spectrum can be obtained in self-affin
profiles. According to this definition, the limit ofn→` of
our formulation and the limit of support size approachi
zero of the multifractal formalism are the same; therefo
the h(l) and f (a) spectra become essentially the same
self-affine profiles. Our probability measure method~Figs. 4,
5, and 10! can classify profiles. If the mixing of Hurst expo
nents exists, the probability distribution curves become si
lar to each other like those of Fig. 4. If the mixing does n
exist, they become congruent to each other like those of F
5 and 10. We obtain the important relationDB522Hq51
for multiaffine profiles. This is a generalization of Eq.~3b!.

We can consider another class of contraction maps
have no homogeneous horizontal intervals@23#. In that case
the h(l) spectrum becomes different from the multiaffin
spectrum. However, a specific application of that analy
method is difficult. This application is an open problem.

The Hida mountains has two unmixed Hurst expone
Hqs andHql . This seems to represent the transition from
mountain to a mountain range. The self-affine profile who
H satisfiesH, 1

2 (H. 1
2 ) has persistence~antipersistence! in

general @11,20#. Hqs50.68. 1
2 means that the profile ha

persistence on a short length scale. On this scale, the to
raphy is certainly rough, but the up~or down! tendency con-
tinues because of the existence of a mountain. In cont
Hql satisfiesHql50.46, 1

2 , i.e., the topography has antipe
sistence on a long length scale. On this scale, ups and do
are repeated due to the jagged topography of many mo
tains in the mountain ranges. This consideration is consis
with the fact that there is no mountain that has a horizon
scale more than a few kilometers in the Hida mountains.

The relations~13a!–~13d! seem to be always satisfied
ordinary statistical self-affine profiles. We conjecture that
most all self-affine fractals in nature are statistically hom
geneous (Hq5const!. Namely, they have the point spectra
ur
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terms of the entropy spectrum. It seems that one Hurst ex
nent might correspond to one physical mechanism in nat
self-affine objects. In the case of the Hida mountains, th
are two Hurst exponents; however, two mechanisms~ero-
sions and plate tectonics! affect different scales. Therefore
two Hurst exponents do not mix with each other. If the pr
file is produced by plural physical mechanisms affecting
same scale, the mixing of Hurst exponents will be obser
and the entropy spectrum will become broad. The remain
interesting problem is whether or not there are such phen
ena in nature. On the other hand, multiaffinity has been
served in a particular class of numerical simulation@24#. Ac-
cording to Ref.@24#, multiaffinity arises from the kinetic
surface roughening with power-law-distributed amplitudes
uncorrelated noise. This type of surface roughening has b
proposed by Zhang@25#. He obtained the variable Hurst~or
roughness! exponent by controlling the exponent of powe
law-distributed amplitudes of uncorrelated noise. He conj
tured that the experimentally observed larger Hurst expon
is a manifestation of this instability by power-law-distribute
amplitudes of uncorrelated noise. We think that broad
tropy spectra are obtained for such rough surfaces. Exp
mental and more detailed studies are future problems.

V. SUMMARY

Self-affine fractal profiles have been studied by the
tropy spectrum method. First, generalized multiaffine p
files were investigated formally and broad entropy spec
were obtained from the profiles created by the generator
has plural contraction ratios in general. We find that the
maining subset atn5` satisfiesDB522Hq51.

FBM traces were analyzed with this method and the po
entropy spectrum was obtained due to the homogeneity
Hq . In spite of the existence of fluctuating lengths of t
segments, the entropy spectrum becomes a point, i.e., t
are no fluctuations of either singularity or topological e
tropy. In addition, we show that real mountain profiles do n
show multiaffinity in spite of the existence of the crossov
of Hurst exponents. Therefore, the entropy spectrum of
mountain profiles also becomes a point spectrum.
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